Rapidly recomputable EEG forward models for realistic head shapes.

نویسندگان

  • J J Ermer
  • J C Mosher
  • S Baillet
  • R M Leah
چکیده

With the increasing availability of surface extraction techniques for magnetic resonance and x-ray computed tomography images, realistic head models can be readily generated as forward models in the analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data. Inverse analysis of this data, however, requires that the forward model be computationally efficient. We propose two methods for approximating the EEG forward model using realistic head shapes. The 'sensor-fitted sphere' approach fits a multilayer sphere individually to each sensor, and the 'three-dimensional interpolation' scheme interpolates using a grid on which a numerical boundary element method (BEM) solution has been precomputed. We have characterized the performance of each method in terms of magnitude and subspace error metrics, as well as computational and memory requirements. We have also made direct performance comparisons with traditional spherical models. The approximation provided by the interpolative scheme had an accuracy nearly identical to full BEM, even within 3 mm of the inner skull surface. Forward model computation during inverse procedures was approximately 30 times faster than for a traditional three-shell spherical model. Cast in this framework, high-fidelity numerical solutions currently viewed as computationally prohibitive for solving the inverse problem (e.g. linear Galerkin BEM) can be rapidly recomputed in a highly efficient manner. The sensor-fitting method has a similar one-time cost to the BEM method, and while it produces some improvement over a standard three-shell sphere, its performance does not approach that of the interpolation method. In both methods, there is a one-time cost associated with precomputing the forward solution over a set of grid points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realistic and Spherical Head Modeling for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis

The accuracy of forward models for electroencephalography (EEG) partly depends on head tissues geometry and strongly affects the reliability of the source reconstruction process, but it is not yet clear which brain regions are more sensitive to the choice of different model geometry. In this paper we compare different spherical and realistic head modeling techniques in estimating EEG forward so...

متن کامل

EEG Simulation Accuracy: Reference Choice and Head Models Extension

— The EEG forward problem involves computing the scalp potentials at a finite set of electrode locations for a source configuration in a specified volume-conductor head model. Brain electrical activity spreads (spatially) over the whole head volume conductor. However, under certain circumstances, it is possible to limit the volume within which the study can be done, thus reducing model size. As...

متن کامل

Effects of Head Models and Dipole Source Parameters on EEG Fields

Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was int...

متن کامل

Generalized head models for MEG/EEG: boundary element method beyond nested volumes.

Accurate geometrical models of the head are necessary for solving the forward and inverse problems of magneto- and electro-encephalography (MEG/EEG). Boundary element methods (BEMs) require a geometrical model describing the interfaces between different tissue types. Classically, head models with a nested volume topology have been used. In this paper, we demonstrate how this constraint can be r...

متن کامل

Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem

To explore the relationship between transcranial current stimulation (tCS) and the electroencephalography (EEG) forward problem, we investigate and compare accuracy and efficiency of a reciprocal and a direct EEG forward approach for dipolar primary current sources both based on the finite element method (FEM), namely the adjoint approach (AA) and the partial integration approach in conjunction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2001